A baby girl and the camera phone were born 20 years ago

Twenty years ago Sunday, Philippe and Sonya Kahn spent 18 hours at a hospital in Santa Cruz, waiting for their baby Sophie to be born. Like nearly all expectant fathers, Philippe Kahn planned to take a picture of the new baby but, instead of waiting till he got home to distribute the photo to friends online, he wanted to do it directly from the hospital. But that was in 1997 when there were no camera phones. So he invented one.

Kahn, who previously founded Borland International and Starfish Software, had already configured a home server to store images, automatically notify friends about new images and send them a link so they could view them via the web. But there was no way to get the pictures to the server directly from a camera.

Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County
Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County.

Kahn had a Casio QV-10, the first consumer-grade digital camera with an LCD display that, he said, “made pixelated but nice 320 by 240 pictures.” He also had a Motorola StarTAC “flip” phone, so during Sonia’s 18 hours of labor, he thought about finding a way to connect the two so he could upload a picture of the baby directly from the hospital.

“It was clear that I had a hardware problem. Short of taking the phone apart I needed to interface with the phone,” he said in an interview.

He also needed to connect a laptop to control the camera/phone connection. Phones then couldn’t connect to either laptops or cameras but – as he pondered the problem – he remembered he had a StarTAC speaker phone kit in his car which, of course, could connect to the phone. With his wife’s blessing, he “literally ran down to my car, took out the whole speaker phone kit and started working frantically at creating a software/firmware/hardware interface” that enabled him to send the pictures from the laptop, which was connected to both the camera and the phone.

As luck would have it, he finished this Rube Goldberg device just in time for the arrival of Sophie and snapped what was not only Sophie’s first picture, but the first picture taken by what eventually evolved into the camera phone.

Kahn’s server sent links to this image to friends, family and colleagues and he started hearing from people who were impressed at how quickly he got this picture from the hospital to their screens, which made him realize he had a potential product.

“Immediately it became clear that we needed a CMOS (complementary metal–oxide–semiconductor) sensor and a micro controller unit integrated in phones. So we built these prototypes that were interfaced with the exact software/server/service-infrastructure,” he said.

With a prototype in hand, Kahn tried to convince the CEOs of Kodak and Polaroid to create an integrated phone and camera “but none of them could imagine that the phone would be the integrating device.” He said that they “hired consultants, market pundits and they all collectively came to the conclusion that phones would be focused on voice and that cameras would become wireless.” Both Kodak and Polaroid later went bankrupt.

“They totally missed the paradigm shift,” said Kahn.

Unable to find a partner in the U.S., Kahn took his idea to Japan but had no success with big players like NTT Docomo. But he did find interest from a small carrier called J-Phone, which, in 1999 partnered with Sharp along with Kahn’s company LightSurf, to design a “Picture-Mail phone.” In 2002 Kahn’s company worked with Sprint and Casio on the first U.S. camera phone.

Sprint loaned me one of those first phones to review. I picked it up at their office on Wilshire Boulevard in Los Angeles and, after leaving the office, I found a parking ticket on my car. Convinced that it was an unjust ticket, I used the phone to document my surroundings to prove why I shouldn’t have to pay the fine. The Los Angeles Parking Citations Bureau disagreed and I didn’t bother to appeal, but it nevertheless convinced me of the power of always having a camera in your pocket.

Today, I routinely use my camera phone to help me remember where I park my car. I take pictures of luggage tags, receipts and the price tags of items I’m thinking of buying. Of course, like most people, I also use my phone to photograph people, animals and scenery. Truth be told, the pictures I take with my smartphone often look just as good as the ones I take with my $1,000 camera.

Kahn’s current company, Santa Cruz-based Fullpower, develops cloud-based technology to power sleep tracking, analog smartwatches and other “Internet of Things” products.

Both my kids were born before Kahn built that camera phone so I wasn’t able to use a phone to transmit pictures of my kids’ births in near real time. But millions of fathers have since instantly shared pictures of their newborns to loved ones far and near. Happy 20th birthday to both the camera phone and Sophie Kahn.

Beautyrest® Launches the New Beautyrest® Sleeptracker® Monitor

Bedding Industry’s First Stand-Alone Sleep Monitoring Device Empowers Individuals to Optimize Daily Performance


(ATLANTA, Ga. – March 21, 2017) – The Beautyrest Brand is proud to introduce the Beautyrest Sleeptracker monitor – a patented sleep monitoring system that pairs with any mattress or foundation, allowing individuals to make their bed a smart bed. This non-invasive breakthrough device is the bedding industry’s first stand-alone solution to monitor a broad range of factors affecting high-quality sleep for two individuals simultaneously. Offering an unprecedented level of accuracy, the monitor is 90 percent accurate when measuring heart rate and breathing rate for the vast majority of the population, 90 percent of the time.

“As one of the most trusted and recognizable bedding brands nationwide, we are proud to embrace the smart home movement with technology that provides a deeper understanding of how we sleep,” said Jim Gallman, Executive Vice President, Beautyrest Marketing. “The Beautyrest Sleeptracker monitor allows consumers to optimize their sleep habits and make improvements that can have dramatic implications for their overall quality of life.”

The monitor provides consumers with an in-depth analysis of each user’s sleep ecosystem – including current behaviors, comparisons to biometrical similar users and personalized tips to help them perform better every day. By analyzing a variety of sleep variables, it also provides personalized recommendations and expert insights designed to improve daily performance. While everyone has an individual definition of what performance means, the Beautyrest Sleeptracker monitor enables users to get the optimal sleep necessary to accomplish whatever may come in the day ahead – whether that is a full day at the office, managing a complex family schedule or even running a marathon.

“The Sleeptracker artificial intelligence (AI) engine represents a dramatic improvement over other sleep monitoring devices, and is the result of significant resources invested in research and development,” said Arthur Kinsolving, Chief Technology Officer of Fullpower Technologies, Inc., the technology partner of the Beautyrest Brand. “With the power of AI and machine learning, the Beautyrest Sleeptracker monitor will continue to stretch its lead and deliver unprecedented deep insights into consumers’ sleep patterns.”

According to the Better Sleep Council, “a good night’s sleep sets the optimal stage for, not only physical, but also mental performance. If you are well rested, you will approach social, professional, and physical challenges in the most advantageous state of mind and body.” The Beautyrest Sleeptracker monitor will provide individuals with a new understanding of what is keeping them up at night while also offering easy-to-implement solutions that recognize long-term trends and become more personalized over time.

The Beautyrest Sleeptracker® Monitor Benefits and Features:

  • The only device in its class that can monitor sleep patterns of two individual sleepers simultaneously due to an advanced AI engine
  • While wearables must be worn on the body and charged regularly, the Beautyrest Sleeptracker monitor plugs directly into a wall outlet, is completely non-invasive and requires no changes to day-to-day bedding
  • Patented system that accurately measures both respiration and heart rate for deeper sleep analysis (wrist-worn wearables can’t monitor the essential respiration vital sign and are notoriously inaccurate for continuous heart rate monitoring)
  • Can be set to automatically monitor sleep data when users fall asleep unexpectedly
  • Pairs with the Sleeptracker iOS and Android smartphone app to offer an unprecedented level of detail – providing users with a minute-by-minute snapshot of their journey through each sleep cycle: light sleep, deep sleep and REM
  • Features a Sleep Cycle Alarm that detects a light stage of sleep in order to wake users at the ideal time in their sleep cycle
  • Offers an AI Sleep Coach that monitors improvement over time and provides effective, easy-to-implement, personal sleep tips based on a comprehensive analysis of individual sleep patterns and external factors that may impact sleep quality
  • Integrates with Amazon Echo – soon allowing control of other smart home elements from a single device, such as thermostats, lights, music, alarm systems, door locks and more

The Beautyrest Sleeptracker monitor is compatible with all mattresses and foundations (results may vary depending on the type of mattress and foundation used) and is available on Amazon.com for $199. The Sleeptracker app is available for download on the App Store and Google Play. Visit Beautyrest.com for more information and to find a retailer near you.

Related Links
Visit Beautyrest.com
Follow Beautyrest on Facebook
Follow Beautyrest on Twitter
Follow Beautyrest on Instagram
Follow Beautyrest on YouTube

About Serta Simmons Bedding, LLC
Serta Simmons Bedding, LLC (SSB) owns and manages two of the largest bedding brands in the mattress industry National Bedding Company L.L.C. (the largest licensee and majority shareholder of Serta, Inc.) and Simmons Bedding Company, LLC. SSB is based in Atlanta and operates 33 manufacturing plants in the United States, five in Canada and one in Puerto Rico. Its subsidiary, National Bedding Company L.L.C., is based in suburban Chicago and markets a broad range of products under the Serta® brand, including Perfect Sleeper®, iComfort®, iSeries®, Sertapedic® and a portfolio of licensed products. In addition to National Bedding Company L.L.C., Serta, Inc. has five other independent licensees in the United States and one in Canada that manufacture and market Serta-branded products. SSB’s other subsidiary, Simmons Bedding Company, LLC, is based in Atlanta and markets a broad range of products including Beautyrest®, Beautyrest Black® and BeautySleep®. Both companies also serve as key suppliers of beds to many of the world’s leading hotel groups and resort properties.

About Fullpower Technologies, Inc.
Fullpower is the leader for cloud-based IoT smart-home and wearable solutions powered by AI, machine-learning and data science. With more than 125 patents, the Fullpower IP portfolio covers the AI-powered Sleeptracker® and the MotionX® IoT technology platforms. Fullpower’s business model is to license technology and IP as a PaaS to brand leaders such as Nike, Beautyrest, Serta, Movado and others. Founded by Philippe Kahn, creator of the first camera-phone, and based in Silicon Valley, the Fullpower team is passionate about AI, machine learning, IoT and PII.

Beautyrest Press Contacts:
Hunter Public Relations on behalf of Beautyrest 
Blake Kaufman
bkaufman@hunterpr.com
(212) 679-6600 x 41-228

Beautyrest Public Relations
Cameron Purcell
cpurcell@simmons.com

Santa Cruz’s Philippe Kahn makes Time’s 100 most influential photos of all time

Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County

NEW YORK – A single drop of milk, a newborn baby and the ravages of war and terrorism are included in a multimedia project featuring Time magazine’s most influential images of all time, released Thursday through a new book, videos and online.

Many of the photos or frames from films are familiar, ingrained in the collective conscious, including the Pulitzer Prize-winning “Falling Man,” taken on 9/11 by Richard Drew of The Associated Press.

Others, and their stories, are little known, such as the tiny snap by Santa Cruz software engineer Philippe Kahn of his new baby, the first cell-phone picture, after he rigged a flip phone with a digital camera in 1997.

The magazine’s editors consulted historians and photo editors and curators around the world, while Time staff wrote essays on each image.

Fullpower Receives Another Important Patent for Improving Sleep

San Francisco, CA, November 13, 2016 (Newswire.com) – Fullpower® Technologies today announced it has been awarded another important patent covering a sleep monitoring system, US 9,474,876 B1, including a “Method or apparatus to improve sleep efficacy” by monitoring user’s sleep patterns continuously and making adjustments to various types of sleep aids accordingly.

“Just like phones are now smartphones, in the next few years beds are becoming smart beds” said Philippe Kahn, CEO and founder of Fullpower. “This patent covers some of the important Sleeptracker innovation for IoT Smartbeds powered by AI, Machine Learning and Data Science.”

This patent is part of an intellectual property portfolio from Fullpower that includes more than 125 issued and pending patents. Broad coverage for the Sleeptracker® Technology Platform and MotionX® technology introduces a new and necessary approach for continuous sleep monitoring and analysis. Fullpower’s ongoing innovation translates into continually broadening and deepening of its technology and sensor-fusion patent portfolio.

Important Links:

www.fullpower.com
www.sleeptracker.com

View the patent (PDF)

About Fullpower:
Fullpower is the leader for cloud-based IoT smart-home and wearable solutions powered by AI, machine-learning and data science. With more than 125 patents, the Fullpower IP portfolio covers the AI-powered Sleeptracker® and the MotionX® IoT technology platforms for the Smart-Home and wearable. Fullpower’s business model is to license technology and IP to brand leaders such as Nike, BeautyRest, Serta, Amazon, Movado and others. Founded by Philippe Kahn, creator of the first camera-phone and based in Silicon Valley, the Fullpower team is passionate about technology craftsmanship, innovation, and the AI-IoT paradigm shift.

Fullpower Receives Patent on a Smartbed IoT Monitoring System to Improve Sleep Quality

San Francisco, CA, October 18, 2016 (Newswire.com) – Fullpower® Technologies today announced it has been awarded another important patent covering a sleep monitoring system, US 9,459,597 B2, including a “Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for the user”. This enables the user to optimize their sleep patterns by adjusting the environment, bedding, and room temperature for optimal sleep to feel more refreshed.

“This is one more important patent, as most smart bedding systems inspired by Fullpower’s Sleeptracker® pioneering efforts try to copy some of the technology,” said Philippe Kahn, CEO and founder of Fullpower. “For IoT and the smart bed in particular, Fullpower’s IP portfolio continues to extend the Sleeptracker® technology platform.”

This patent is part of an intellectual property portfolio from Fullpower that includes more than 125 issued and pending patents. Broad coverage for the Sleeptracker® Technology Platform and MotionX® technology introduces a new and necessary approach for continuous sleep monitoring and analysis. Fullpower’s ongoing innovation translates into continually broadening and deepening of its technology and sensor-fusion patent portfolio.

Important Links:

www.fullpower.com
www.sleeptracker.com

About Fullpower:

Fullpower, based in Silicon Valley and founded in 2003 by Philippe Kahn, creator of the first camera-phone, is the leader for IoT and wearable cloud-based solutions powered by data science, AI and machine-learning. The Fullpower technology and IP portfolio covers the Sleeptracker® and the MotionX® technology platforms for IoT and wearable. Fullpower’s business model is to license technology and patents to industry leaders such as Nike, Simmons, Serta, Movado, MMT and others.

Click to read the patent.

A Story of Innovation: Parisian Pioneer Behind Our Everyday Tech

An interview with Danielle Newnham for her book in 2013 and 3 years later and shows how we brought the Fullpower IoT agile development platform to market with the Sleeptracker Smartbed and Nike+ as wearables commoditized.

The place of innovation and invention: An interview with Danielle Newnham for her book in 2013 and 3 years later and shows how we brought the Fullpower IoT agile development platform to market with the Sleeptracker Smartbed and Nike+ as wearables commoditized.

The top 20 Universities In the world and their most successful alumni, including Larry Page (Google), Gordon Moore (Intel), Elon Musk (Tesla, SpaceX) and Philippe Kahn (Camera-Phone, Fullpower).

Philippe Kahn, notable ETH Zurich alumni

ETH Zurich in Switzerland,  one of the top leading universities in technology and science in the worldwhere Einstein studied and taught was founded in 1855, currently counts over 18,500 students including 4,000 doctoral students from 110 countries. The ETH has helped educate some of the world’s most famous big thinkers, including Albert Einstein and many Nobel prize winners. Fullpower CEO and founder Philippe Kahn was selected as the notable alumni for The ETH world ranking. Alumni Philippe Kahn is known for making the first camera phone solution to share pictures instantly on public networks, and has founded three successful technology companies: LightSurf Technologies, Starfish Software, and now Fullpower Technologies, creator of the Sleeptracker IoT Smartbed platform.

Philippe Kahn, notable ETH Zurich alumni

ETH Zurich is consistently ranked among the top 5 universities in the world in engineering, science and technology together with Stanford, Berkeley, MIT, Cambridge University  in the QS World University Rankings.

The list of schools includes the ETH Switzerland, the University of Pennsylvania (USA), Harvard University (USA), Yale University (USA), University of Southern California (USA), Princeton University (USA), Cornell University (USA), Stanford University (USA), The University of California, Berkeley (USA), University of Mumbai (INDIA), London School of Economics and Political Science (UK), Lomonosov Moscow State University (RUSSIA), University of Texas (USA), Dartmouth College (USA), University of Michigan (USA), New York University (USA), Duke University (USA), Columbia University (USA), Brown University (USA), Massachusetts Institute of Technology  (USA)

View the article at The Hans India

 

Are You Ready for SensorWorld?

Sensors, sensors, everywhere sensors. In our clothes, our shoes, air conditioners, cars, diapers and beds. And what are all these sensors doing? They’re collecting and analyzing data of course – billions of discrete pieces of information every picosecond of every day so we can, a) make informed decisions and, b) automate all of the things connected by the IoT (Internet of Things). Soon sensors embedded in my pajamas will determine I’m dehydrated from having a little too much fun the night before, then send a message to the 3-D food printer in my kitchen to make a drink designed to replenish my electrolytes. Sensors will also heat my house the minute my car heads for home and tell me when my 16-year old is driving over the speed limit.

Sound far-fetched? It shouldn’t.

Recently, Senior Editor of Wired Magazine, Bill Wasik, reported, “A new device revolution is at hand: just as mobile phones and tablets displaced the once-dominant PC, wearable devices are poised to push smartphones aside.” In truth, the U.S. sensor market is expected to surpass $15 billion in 2016, causing On World to forecast that by 2017, global shipments of wearable, implantable, and mobile health and fitness devices will be up 552% from 2012.

Welcome to SensorWorld.

Now sensors and data analytics are preparing to go where ‘no man has gone before.’ Tackling an activity we spend a third of our lives ignoring: sleep! Why sleep? The National Sleep Foundation reports that 43% of Americans rarely get a good night’s sleep, and 60% experience a sleep problem almost every night. A recent Gallup poll revealed that since 1942, the amount of sleep we get has decreased roughly a half an hour per night and continues to trend downward. And the Center for Disease Prevention and Control (CDC) claims over 9 million Americans currently rely on a pharmaceutical to fall asleep.

According to technology pioneer, and inventor of the world’s first camera phone,Philippe Kahn, our growing problem with sleep began during the Industrial Revolution when “the mythical eight-hour sleep night” was fabricated to extract longer hours from factory workers. “Before the Industrial Revolution,” Kahn explained, “people were mostly sleeping in two shifts… nobody was really sleeping eight hours straight.” He continued, “The concept that we have to sleep in uninterrupted ways all the time, in a perfectly quiet environment, in a perfectly dark room… to me is a misconception and something that is misleading people to understand how to optimize their sleep.”

Kahn stumbled on the idea of “budgeting” sleep on a record-setting, two-man Transpacific sailing trip in 2009. With a two-person crew, each person is allowed to sleep for only brief periods of time. So Kahn decided to use his sailboat as a laboratory to determine the amount of sleep that produced the highest levels of alertness and energy. He discovered that number was twenty-six minutes. From that point on Kahn began modeling his sleep after his dog – short periods of deep rest with the ability to wake at a moment’s notice in a high state of “readiness,” and then quickly return to a deep sleep. Kahn claims that from an evolutionary standpoint this is the way humans were designed to sleep – they function best when sleep is “budgeted” for, and “optimized,” in the same way we do investment planning – only when it comes to sleep, returns are measured in terms of health and productivity.

Enter Kahn’s latest breakthrough in sensor and data analytics technology: the Smart Bed. The Smart Bed replaces the traditional “box-spring” with a sensor-based unit designed to monitor movement, body temperature and other metrics so we can optimize when and how much we sleep. The Smart Bed and Sleep Tracker was developed by Kahn’s company Fullpower – an enterprise focused on precise, non-invasive data monitoring and analysis. According to Kahn, sleep was a logical application for his company because of the number of hours humans spend sleeping, the mythology surrounding the need for a continuous eight-hour rest, and his personal revelations while sailing. Kahn observes, “Sleep is a bit like the deep ocean. We know it is there but we don’t understand it well. Modern science doesn’t understand sleep very well because it is very difficult to monitor sleep in a non-invasive way.” With the new Smart Bed, Kahn is poised to revolutionize the way humans rest and the effect this will have on efficiency, output, health and ultimately, longevity.

While Fullpower is pushing the frontiers of sleep technology, other companies are leveraging sensor and data analytics technologies to optimize other areas. Pixie Scientific, is embedding sensors into “smart diapers” that will allow diseases, dehydration and nutritional deficiencies to be detected in diapers. Intel’s new Smart Band tracks, monitors and analyzes the tremor patterns of Parkinson’s patients, and a new generation of smart pills and monitoring patches from Proteus are in the works. Peter Reinhart, Director of the Institute for Applied Life Sciences for the University of Massachusetts recently revealed that sensor technologies would soon shift from diagnosis to treatment, “As we get better and better at this, we’re going to find that new therapeutic options are going to be open to us. Identifying an Alzheimer’s patient at the [observable] behavioral point, when 70 percent of the brain mass has already disappeared, really limits the number of therapeutic options you can provide that patient. If you could identify someone like that seven or eight years earlier, it now opens up a very different array of intervention strategies.”

But, as Kahn points out, collecting and translating data is only half the story. The other half is connecting to devices, which will be automatically instructed by the analyzed data. Google’s Nest offers a home app that uses sensors, analytics and the internet to connect everything from your thermostat to your fire alarms and home security system. Apple has launched a similar IoT application called HomeKit. According to Kahn, the Smart Bed will have the ability to turn your bedroom thermostat down when your body is at rest and turn the heat back up when the bed senses you are waking. It will lift the shades in your bedroom, signal the hot water heater to ready the shower, and the coffee machine to prepare your coffee just the way you like it. And if that sounds like the stuff of science fiction, look again. Theo Priestly, technology strategist and Forbes contributor claims the IoT will be comprised of 50 billion interconnected devices before 2020 – representing a whopping $19 trillion market. Fitbit, smart watches, smart clothing, diapers and beds are just the beginning. Within the next five years, sensors will monitor, customize and automate everything.

Are you ready for SensorWorld?

Follow Rebecca Costa on Twitter: twitter.com/rebeccacosta
Read the original article @ Huffington Post

Wear It’s At

Wearable technology is changing how we exercise, and even how we live—but you ain’t seen nothin’ yet

goodtimes-wear-its-at

We live in an age where technology is intertwined into almost every aspect of our lives. Perhaps the only place it hasn’t yet completely conquered is our own bodies. That may be why mainstream culture greeted certain wearable technology like Google Glass with distrust and even outright hostility—after all, once technology is on us, isn’t it only a matter of time before it’s in us, or simply is us?

But Philippe Kahn, best known as the inventor of the camera phone, and now CEO and founder of Santa Cruz-based Fullpower Technologies Inc., thinks that attitude is rapidly becoming a thing of the past. More and more consumers are embracing gadgets like FitBits, smart watches, smart beds, and even fitness-tracking smart shoes for their potential to revolutionize the fitness and health care industries. These wearables can track every aspect of daily life, from sleep patterns to steps taken to heart rate, calories burned, body weight, and time spent standing.

Meanwhile, Kahn’s company is already working on all sorts of ideas that will help usher in the next era of wearable tech. Why is he betting the industry will continue to grow? Because knowledge is power. When it comes to improving our health and lifestyles, extremely individualized data can go a long way. And when we decide to make a change and do something about it, wearable technology can provide immediate feedback on our progress.

“It’s simple and amazingly efficient,” Kahn tells GT. Wearable technology provides the kind of information that can get results fast, he says, which feeds its popularity. “Without any other changes, if Ms. and Mr. Everyone are just a little more active and sleep just a little more, health immediately improves.”

Whereas current fitness wristbands and watches collect data mainly through an accelerometer that tracks step-related movements or lack thereof, devices of the future will be able to distinguish among many different and diverse types of exercise, as well as provide data about blood sugar, hydration, hormone levels, and beyond. Additionally, whereas a current concern among wearable technology users and makers is a lack of privacy, the wearable tech of the future will use authentication techniques that are unique to every individual, such as heart rhythm.

Current wearable fitness trackers are fairly limited in the types of exercise they can track, and this is especially true if the exercise doesn’t involve taking steps. The next generation of wearable tech will not only be able to “learn” and measure new exercises performed by the wearer, it will also be able to more accurately track activities like weight lifting, swimming, and even something like playing an instrument that while usually performed stationary is nonetheless a legitimate workout for the upper body. Future fitness wearables will also be able to instantly access the wearer’s diet and medical history and even be able to “critically think” and provide advice. Smart sports gear is also just around the corner, such as a basketball that has an implanted computer and can track made baskets and provide feedback on shooting form, or a football that can help aspiring quarterbacks throw a tighter spiral.

PICTURE OF HEALTH

Exercise and sport aren’t the only frontiers for wearable technologies. They show even greater potential to improve personal health on a large scale because they provide a larger amount of more accurate data to a doctor or health care provider. As long as the patient consistently wears his or her health-and-fitness-tracking wearable technology, a doctor can easily use the data from the device to get a more accurate picture of the patient’s lifestyle. This will allow doctors to make better decisions and diagnoses than ever before. Eventually, wearable technology will allow doctors to treat patients remotely, without having to see them in person—transforming health care for travelers, those who find it difficult or impossible to visit a doctor’s office, and pretty much everyone else.

Some examples of cutting-edge health care wearable technology include body-worn sensors and contact lenses that monitor blood sugar levels and could revolutionize the care and management of diabetes, an increasingly common condition in America. Companies are also developing smart bras that track breast health, as well as wearable technology that could help a person quit smoking by detecting cravings and then releasing medication before the smoker falls off the wagon and lights up a cigarette. There is even ingestible technology being developed that is powered by stomach acid and could monitor the timing and consistency of when a person takes their medications. This could provide doctors with unprecedented information about the adherence to and effectiveness of prescribed therapies.

FUZZY DATA

Wearable technology, however, is still in its infancy, or, at most, its toddlerhood. And there are plenty of growing pains.

One challenge is the drive to constantly improve the accuracy of the data these devices provide. When current wearable technology can only provide estimates on steps taken, calories burned, or anything else, it simply isn’t good enough. This can be a major problem, especially if health care providers are basing recommendations for medication, exercise, diet, and lifestyle on the accuracy of this data.

“Accuracy is important, as that is key work that Fullpower focuses on more than any other company on the planet,” says Kahn. But for most current applications of wearable technology, he believes this issue shouldn’t be overblown. “Remember that the benefits come from being more active and sleeping a little longer, not necessarily understanding every detail of everything.”

At this point, there is little industry regulation and no governing body to make independent verifications of wearable technology data, and to make sure standards are upheld. Greater industry regulation with independently verified data will go a long way toward legitimizing the entire industry. “We sure hope this happens soon, as it will make Fullpower’s technology shine even more,” says Kahn. “My understanding is that there are a couple of labs who are evaluating the business opportunity.”

There is also the issue of interpretation of all this data—without it, the information is basically useless. “It’s not just quantified self-measuring, it’s using big data science to give meaningful insights,” explains Kahn. “For example, Fullpower’s new Sleeptracker® Smartbed will soon start being deployed by major bedding manufacturers and will provide lots of insights and tools to improve sleep.” Kahn says the insight the smart bed provides is based on data from more than 500 million nights of detailed recorded sleep, and calls it “the greatest sleep study ever.”

Wearable technology not only needs to be stylish, in Kahn’s view, it also needs to be at least somewhat invisible or at least seamlessly integrated into a person’s “look.” Making a one-size-fits-all product that also has universal aesthetic appeal is no small challenge. Just consider how many different companies sell widely diverse products that are all essentially either a shoe, a shirt, a hat, or anything else wearable.

“We believe that wearable tech and fashion are tied at the hip. We are focused on making non-invasive technology that is green, invisible and beautifully discreet,” says Kahn.

Battery life is another challenge. “Fullpower is working on energy harvesting off the host. It’s no different than getting solar energy to work in the home,” says Kahn. His company recently launched the Movado smartwatch that can run for over two years without a charge. Whether it’s using body heat, body movement, or some other source, renewable energy is a big part of the future of wearable technology.

WEARABLE FRONTIERS

As bright as the future may be for wearable fitness technology, the possibilities for merging man and machine on a larger scale may be even more astounding. For example, Lockheed Martin has developed an unpowered exoskeleton that makes heavy tools feel almost weightless, as if they are being used in zero gravity. This kind of technology could revolutionize many industries including construction, demolition, disaster cleanup, and first-responder situations. Still other exoskeletons are being used to help paraplegics regain the use of their legs and walk again. There is even wearable technology being developed that turns sound into patterns of vibration felt on the skin from a garment that, with training, can help the deaf “hear” the world around them in a similar way to how Braille turns letters and words on a page into tactile representations that allow the blind to “see.” Some people are even pushing the boundaries of our senses by implanting magnets into their fingertips in order to be able to “feel” electromagnetism.

The incredible neuroplasticity of the human brain allows for all of this remarkable technology to be seamlessly integrated into the brain’s representation of the body over time. For example, ask any experienced surfer where the body ends and they will all tell you that eventually the surfboard becomes an extension of the self. To them, the body does not end at the foot, it ends on the wave.

All of this seemingly space-age technology being closer to our doorstep than most of us thought begs the question: How much technology is too much technology? But the reality is that technology is in many ways the ultimate embodiment of everything it means to be human, showcasing our ingenuity, ambition and creativity. Wearable technology is only the latest expression of an age-old truth: We have always been natural born cyborgs, using technology to transcend ourselves and our biology.

Visit gtweekly.com to view the original article.

Mondaine Wins 2015 Good Design Award

mondaine-wins-2015-good-design-award-1

Mondaine has received a 2015 GOOD DESIGN Award for the Helvetica No1 Smart watch.

“Industrial design is about so much more than furniture and lighting,” commented Courtney Robinson, Marlox USA Marketing Director, Mondaine Brand. “Creating a truly good watch involves overcoming a lot of design challenges to reach innovative solutions, and we are honored that the Chicago Athenaeum recognized the Helvetica No1 Smart, Mondaine’s first connected device, with a 2015 GOOD DESIGN Award.”

Inside all Mondaine Helvetica No1 Smart watches is the latest in smart technology focused on monitoring activity and sleep, featuring MotionX activity tracking, Sleeptracker sleep monitoring, sleep cycle alarms, get-active alerts, adaptive coaching and automatic time alignment – all the data from which can be backed up and stored in the MotionX cloud.

The watch does not need to be recharged regularly, boasting a 2+ year battery life. It uses the horological smartwatch platform, power MotionX, which manages the bi-directional communication between the watch and whichever device, be it phone or tablet, it is connected to via the downloaded app. In complete contrast to other smart devices, where the data is shown digitally on the watch, the information is read in an analogue fashion via the sub dial.

Read the original article @ http://www.dexigner.com