A baby girl and the camera phone were born 20 years ago

Twenty years ago Sunday, Philippe and Sonya Kahn spent 18 hours at a hospital in Santa Cruz, waiting for their baby Sophie to be born. Like nearly all expectant fathers, Philippe Kahn planned to take a picture of the new baby but, instead of waiting till he got home to distribute the photo to friends online, he wanted to do it directly from the hospital. But that was in 1997 when there were no camera phones. So he invented one.

Kahn, who previously founded Borland International and Starfish Software, had already configured a home server to store images, automatically notify friends about new images and send them a link so they could view them via the web. But there was no way to get the pictures to the server directly from a camera.

Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County
Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County.

Kahn had a Casio QV-10, the first consumer-grade digital camera with an LCD display that, he said, “made pixelated but nice 320 by 240 pictures.” He also had a Motorola StarTAC “flip” phone, so during Sonia’s 18 hours of labor, he thought about finding a way to connect the two so he could upload a picture of the baby directly from the hospital.

“It was clear that I had a hardware problem. Short of taking the phone apart I needed to interface with the phone,” he said in an interview.

He also needed to connect a laptop to control the camera/phone connection. Phones then couldn’t connect to either laptops or cameras but – as he pondered the problem – he remembered he had a StarTAC speaker phone kit in his car which, of course, could connect to the phone. With his wife’s blessing, he “literally ran down to my car, took out the whole speaker phone kit and started working frantically at creating a software/firmware/hardware interface” that enabled him to send the pictures from the laptop, which was connected to both the camera and the phone.

As luck would have it, he finished this Rube Goldberg device just in time for the arrival of Sophie and snapped what was not only Sophie’s first picture, but the first picture taken by what eventually evolved into the camera phone.

Kahn’s server sent links to this image to friends, family and colleagues and he started hearing from people who were impressed at how quickly he got this picture from the hospital to their screens, which made him realize he had a potential product.

“Immediately it became clear that we needed a CMOS (complementary metal–oxide–semiconductor) sensor and a micro controller unit integrated in phones. So we built these prototypes that were interfaced with the exact software/server/service-infrastructure,” he said.

With a prototype in hand, Kahn tried to convince the CEOs of Kodak and Polaroid to create an integrated phone and camera “but none of them could imagine that the phone would be the integrating device.” He said that they “hired consultants, market pundits and they all collectively came to the conclusion that phones would be focused on voice and that cameras would become wireless.” Both Kodak and Polaroid later went bankrupt.

“They totally missed the paradigm shift,” said Kahn.

Unable to find a partner in the U.S., Kahn took his idea to Japan but had no success with big players like NTT Docomo. But he did find interest from a small carrier called J-Phone, which, in 1999 partnered with Sharp along with Kahn’s company LightSurf, to design a “Picture-Mail phone.” In 2002 Kahn’s company worked with Sprint and Casio on the first U.S. camera phone.

Sprint loaned me one of those first phones to review. I picked it up at their office on Wilshire Boulevard in Los Angeles and, after leaving the office, I found a parking ticket on my car. Convinced that it was an unjust ticket, I used the phone to document my surroundings to prove why I shouldn’t have to pay the fine. The Los Angeles Parking Citations Bureau disagreed and I didn’t bother to appeal, but it nevertheless convinced me of the power of always having a camera in your pocket.

Today, I routinely use my camera phone to help me remember where I park my car. I take pictures of luggage tags, receipts and the price tags of items I’m thinking of buying. Of course, like most people, I also use my phone to photograph people, animals and scenery. Truth be told, the pictures I take with my smartphone often look just as good as the ones I take with my $1,000 camera.

Kahn’s current company, Santa Cruz-based Fullpower, develops cloud-based technology to power sleep tracking, analog smartwatches and other “Internet of Things” products.

Both my kids were born before Kahn built that camera phone so I wasn’t able to use a phone to transmit pictures of my kids’ births in near real time. But millions of fathers have since instantly shared pictures of their newborns to loved ones far and near. Happy 20th birthday to both the camera phone and Sophie Kahn.

Santa Cruz’s Philippe Kahn makes Time’s 100 most influential photos of all time

Philippe Kahn took the first ever cell phone picture of his then-newborn daughter Sophie in Santa Cruz County

NEW YORK – A single drop of milk, a newborn baby and the ravages of war and terrorism are included in a multimedia project featuring Time magazine’s most influential images of all time, released Thursday through a new book, videos and online.

Many of the photos or frames from films are familiar, ingrained in the collective conscious, including the Pulitzer Prize-winning “Falling Man,” taken on 9/11 by Richard Drew of The Associated Press.

Others, and their stories, are little known, such as the tiny snap by Santa Cruz software engineer Philippe Kahn of his new baby, the first cell-phone picture, after he rigged a flip phone with a digital camera in 1997.

The magazine’s editors consulted historians and photo editors and curators around the world, while Time staff wrote essays on each image.

Fullpower Receives Another Important Patent for Improving Sleep

San Francisco, CA, November 13, 2016 (Newswire.com) – Fullpower® Technologies today announced it has been awarded another important patent covering a sleep monitoring system, US 9,474,876 B1, including a “Method or apparatus to improve sleep efficacy” by monitoring user’s sleep patterns continuously and making adjustments to various types of sleep aids accordingly.

“Just like phones are now smartphones, in the next few years beds are becoming smart beds” said Philippe Kahn, CEO and founder of Fullpower. “This patent covers some of the important Sleeptracker innovation for IoT Smartbeds powered by AI, Machine Learning and Data Science.”

This patent is part of an intellectual property portfolio from Fullpower that includes more than 125 issued and pending patents. Broad coverage for the Sleeptracker® Technology Platform and MotionX® technology introduces a new and necessary approach for continuous sleep monitoring and analysis. Fullpower’s ongoing innovation translates into continually broadening and deepening of its technology and sensor-fusion patent portfolio.

Important Links:

www.fullpower.com
www.sleeptracker.com

View the patent (PDF)

About Fullpower:
Fullpower is the leader for cloud-based IoT smart-home and wearable solutions powered by AI, machine-learning and data science. With more than 125 patents, the Fullpower IP portfolio covers the AI-powered Sleeptracker® and the MotionX® IoT technology platforms for the Smart-Home and wearable. Fullpower’s business model is to license technology and IP to brand leaders such as Nike, BeautyRest, Serta, Amazon, Movado and others. Founded by Philippe Kahn, creator of the first camera-phone and based in Silicon Valley, the Fullpower team is passionate about technology craftsmanship, innovation, and the AI-IoT paradigm shift.

Fullpower Receives Patent on a Smartbed IoT Monitoring System to Improve Sleep Quality

San Francisco, CA, October 18, 2016 (Newswire.com) – Fullpower® Technologies today announced it has been awarded another important patent covering a sleep monitoring system, US 9,459,597 B2, including a “Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for the user”. This enables the user to optimize their sleep patterns by adjusting the environment, bedding, and room temperature for optimal sleep to feel more refreshed.

“This is one more important patent, as most smart bedding systems inspired by Fullpower’s Sleeptracker® pioneering efforts try to copy some of the technology,” said Philippe Kahn, CEO and founder of Fullpower. “For IoT and the smart bed in particular, Fullpower’s IP portfolio continues to extend the Sleeptracker® technology platform.”

This patent is part of an intellectual property portfolio from Fullpower that includes more than 125 issued and pending patents. Broad coverage for the Sleeptracker® Technology Platform and MotionX® technology introduces a new and necessary approach for continuous sleep monitoring and analysis. Fullpower’s ongoing innovation translates into continually broadening and deepening of its technology and sensor-fusion patent portfolio.

Important Links:

www.fullpower.com
www.sleeptracker.com

About Fullpower:

Fullpower, based in Silicon Valley and founded in 2003 by Philippe Kahn, creator of the first camera-phone, is the leader for IoT and wearable cloud-based solutions powered by data science, AI and machine-learning. The Fullpower technology and IP portfolio covers the Sleeptracker® and the MotionX® technology platforms for IoT and wearable. Fullpower’s business model is to license technology and patents to industry leaders such as Nike, Simmons, Serta, Movado, MMT and others.

Click to read the patent.

A Story of Innovation: Parisian Pioneer Behind Our Everyday Tech

An interview with Danielle Newnham for her book in 2013 and 3 years later and shows how we brought the Fullpower IoT agile development platform to market with the Sleeptracker Smartbed and Nike+ as wearables commoditized.

The place of innovation and invention: An interview with Danielle Newnham for her book in 2013 and 3 years later and shows how we brought the Fullpower IoT agile development platform to market with the Sleeptracker Smartbed and Nike+ as wearables commoditized.

The top 20 Universities In the world and their most successful alumni, including Larry Page (Google), Gordon Moore (Intel), Elon Musk (Tesla, SpaceX) and Philippe Kahn (Camera-Phone, Fullpower).

Philippe Kahn, notable ETH Zurich alumni

ETH Zurich in Switzerland,  one of the top leading universities in technology and science in the worldwhere Einstein studied and taught was founded in 1855, currently counts over 18,500 students including 4,000 doctoral students from 110 countries. The ETH has helped educate some of the world’s most famous big thinkers, including Albert Einstein and many Nobel prize winners. Fullpower CEO and founder Philippe Kahn was selected as the notable alumni for The ETH world ranking. Alumni Philippe Kahn is known for making the first camera phone solution to share pictures instantly on public networks, and has founded three successful technology companies: LightSurf Technologies, Starfish Software, and now Fullpower Technologies, creator of the Sleeptracker IoT Smartbed platform.

Philippe Kahn, notable ETH Zurich alumni

ETH Zurich is consistently ranked among the top 5 universities in the world in engineering, science and technology together with Stanford, Berkeley, MIT, Cambridge University  in the QS World University Rankings.

The list of schools includes the ETH Switzerland, the University of Pennsylvania (USA), Harvard University (USA), Yale University (USA), University of Southern California (USA), Princeton University (USA), Cornell University (USA), Stanford University (USA), The University of California, Berkeley (USA), University of Mumbai (INDIA), London School of Economics and Political Science (UK), Lomonosov Moscow State University (RUSSIA), University of Texas (USA), Dartmouth College (USA), University of Michigan (USA), New York University (USA), Duke University (USA), Columbia University (USA), Brown University (USA), Massachusetts Institute of Technology  (USA)

View the article at The Hans India

 

Wear It’s At

Wearable technology is changing how we exercise, and even how we live—but you ain’t seen nothin’ yet

goodtimes-wear-its-at

We live in an age where technology is intertwined into almost every aspect of our lives. Perhaps the only place it hasn’t yet completely conquered is our own bodies. That may be why mainstream culture greeted certain wearable technology like Google Glass with distrust and even outright hostility—after all, once technology is on us, isn’t it only a matter of time before it’s in us, or simply is us?

But Philippe Kahn, best known as the inventor of the camera phone, and now CEO and founder of Santa Cruz-based Fullpower Technologies Inc., thinks that attitude is rapidly becoming a thing of the past. More and more consumers are embracing gadgets like FitBits, smart watches, smart beds, and even fitness-tracking smart shoes for their potential to revolutionize the fitness and health care industries. These wearables can track every aspect of daily life, from sleep patterns to steps taken to heart rate, calories burned, body weight, and time spent standing.

Meanwhile, Kahn’s company is already working on all sorts of ideas that will help usher in the next era of wearable tech. Why is he betting the industry will continue to grow? Because knowledge is power. When it comes to improving our health and lifestyles, extremely individualized data can go a long way. And when we decide to make a change and do something about it, wearable technology can provide immediate feedback on our progress.

“It’s simple and amazingly efficient,” Kahn tells GT. Wearable technology provides the kind of information that can get results fast, he says, which feeds its popularity. “Without any other changes, if Ms. and Mr. Everyone are just a little more active and sleep just a little more, health immediately improves.”

Whereas current fitness wristbands and watches collect data mainly through an accelerometer that tracks step-related movements or lack thereof, devices of the future will be able to distinguish among many different and diverse types of exercise, as well as provide data about blood sugar, hydration, hormone levels, and beyond. Additionally, whereas a current concern among wearable technology users and makers is a lack of privacy, the wearable tech of the future will use authentication techniques that are unique to every individual, such as heart rhythm.

Current wearable fitness trackers are fairly limited in the types of exercise they can track, and this is especially true if the exercise doesn’t involve taking steps. The next generation of wearable tech will not only be able to “learn” and measure new exercises performed by the wearer, it will also be able to more accurately track activities like weight lifting, swimming, and even something like playing an instrument that while usually performed stationary is nonetheless a legitimate workout for the upper body. Future fitness wearables will also be able to instantly access the wearer’s diet and medical history and even be able to “critically think” and provide advice. Smart sports gear is also just around the corner, such as a basketball that has an implanted computer and can track made baskets and provide feedback on shooting form, or a football that can help aspiring quarterbacks throw a tighter spiral.

PICTURE OF HEALTH

Exercise and sport aren’t the only frontiers for wearable technologies. They show even greater potential to improve personal health on a large scale because they provide a larger amount of more accurate data to a doctor or health care provider. As long as the patient consistently wears his or her health-and-fitness-tracking wearable technology, a doctor can easily use the data from the device to get a more accurate picture of the patient’s lifestyle. This will allow doctors to make better decisions and diagnoses than ever before. Eventually, wearable technology will allow doctors to treat patients remotely, without having to see them in person—transforming health care for travelers, those who find it difficult or impossible to visit a doctor’s office, and pretty much everyone else.

Some examples of cutting-edge health care wearable technology include body-worn sensors and contact lenses that monitor blood sugar levels and could revolutionize the care and management of diabetes, an increasingly common condition in America. Companies are also developing smart bras that track breast health, as well as wearable technology that could help a person quit smoking by detecting cravings and then releasing medication before the smoker falls off the wagon and lights up a cigarette. There is even ingestible technology being developed that is powered by stomach acid and could monitor the timing and consistency of when a person takes their medications. This could provide doctors with unprecedented information about the adherence to and effectiveness of prescribed therapies.

FUZZY DATA

Wearable technology, however, is still in its infancy, or, at most, its toddlerhood. And there are plenty of growing pains.

One challenge is the drive to constantly improve the accuracy of the data these devices provide. When current wearable technology can only provide estimates on steps taken, calories burned, or anything else, it simply isn’t good enough. This can be a major problem, especially if health care providers are basing recommendations for medication, exercise, diet, and lifestyle on the accuracy of this data.

“Accuracy is important, as that is key work that Fullpower focuses on more than any other company on the planet,” says Kahn. But for most current applications of wearable technology, he believes this issue shouldn’t be overblown. “Remember that the benefits come from being more active and sleeping a little longer, not necessarily understanding every detail of everything.”

At this point, there is little industry regulation and no governing body to make independent verifications of wearable technology data, and to make sure standards are upheld. Greater industry regulation with independently verified data will go a long way toward legitimizing the entire industry. “We sure hope this happens soon, as it will make Fullpower’s technology shine even more,” says Kahn. “My understanding is that there are a couple of labs who are evaluating the business opportunity.”

There is also the issue of interpretation of all this data—without it, the information is basically useless. “It’s not just quantified self-measuring, it’s using big data science to give meaningful insights,” explains Kahn. “For example, Fullpower’s new Sleeptracker® Smartbed will soon start being deployed by major bedding manufacturers and will provide lots of insights and tools to improve sleep.” Kahn says the insight the smart bed provides is based on data from more than 500 million nights of detailed recorded sleep, and calls it “the greatest sleep study ever.”

Wearable technology not only needs to be stylish, in Kahn’s view, it also needs to be at least somewhat invisible or at least seamlessly integrated into a person’s “look.” Making a one-size-fits-all product that also has universal aesthetic appeal is no small challenge. Just consider how many different companies sell widely diverse products that are all essentially either a shoe, a shirt, a hat, or anything else wearable.

“We believe that wearable tech and fashion are tied at the hip. We are focused on making non-invasive technology that is green, invisible and beautifully discreet,” says Kahn.

Battery life is another challenge. “Fullpower is working on energy harvesting off the host. It’s no different than getting solar energy to work in the home,” says Kahn. His company recently launched the Movado smartwatch that can run for over two years without a charge. Whether it’s using body heat, body movement, or some other source, renewable energy is a big part of the future of wearable technology.

WEARABLE FRONTIERS

As bright as the future may be for wearable fitness technology, the possibilities for merging man and machine on a larger scale may be even more astounding. For example, Lockheed Martin has developed an unpowered exoskeleton that makes heavy tools feel almost weightless, as if they are being used in zero gravity. This kind of technology could revolutionize many industries including construction, demolition, disaster cleanup, and first-responder situations. Still other exoskeletons are being used to help paraplegics regain the use of their legs and walk again. There is even wearable technology being developed that turns sound into patterns of vibration felt on the skin from a garment that, with training, can help the deaf “hear” the world around them in a similar way to how Braille turns letters and words on a page into tactile representations that allow the blind to “see.” Some people are even pushing the boundaries of our senses by implanting magnets into their fingertips in order to be able to “feel” electromagnetism.

The incredible neuroplasticity of the human brain allows for all of this remarkable technology to be seamlessly integrated into the brain’s representation of the body over time. For example, ask any experienced surfer where the body ends and they will all tell you that eventually the surfboard becomes an extension of the self. To them, the body does not end at the foot, it ends on the wave.

All of this seemingly space-age technology being closer to our doorstep than most of us thought begs the question: How much technology is too much technology? But the reality is that technology is in many ways the ultimate embodiment of everything it means to be human, showcasing our ingenuity, ambition and creativity. Wearable technology is only the latest expression of an age-old truth: We have always been natural born cyborgs, using technology to transcend ourselves and our biology.

Visit gtweekly.com to view the original article.

Mondaine Wins 2015 Good Design Award

mondaine-wins-2015-good-design-award-1

Mondaine has received a 2015 GOOD DESIGN Award for the Helvetica No1 Smart watch.

“Industrial design is about so much more than furniture and lighting,” commented Courtney Robinson, Marlox USA Marketing Director, Mondaine Brand. “Creating a truly good watch involves overcoming a lot of design challenges to reach innovative solutions, and we are honored that the Chicago Athenaeum recognized the Helvetica No1 Smart, Mondaine’s first connected device, with a 2015 GOOD DESIGN Award.”

Inside all Mondaine Helvetica No1 Smart watches is the latest in smart technology focused on monitoring activity and sleep, featuring MotionX activity tracking, Sleeptracker sleep monitoring, sleep cycle alarms, get-active alerts, adaptive coaching and automatic time alignment – all the data from which can be backed up and stored in the MotionX cloud.

The watch does not need to be recharged regularly, boasting a 2+ year battery life. It uses the horological smartwatch platform, power MotionX, which manages the bi-directional communication between the watch and whichever device, be it phone or tablet, it is connected to via the downloaded app. In complete contrast to other smart devices, where the data is shown digitally on the watch, the information is read in an analogue fashion via the sub dial.

Read the original article @ http://www.dexigner.com

Mondaine Group reveals smart new watch from Helvetica

Helen Pawson
The Moodie Report

Swiss watchmaker Mondaine showcased the brand’s first ever smart watch at last week’s TFWA World Exhibition.

The Helvetica No 1 Smart, which does not have a LED screen like other smart watches, features the Mondaine Helvetica Bold shape, a classic brushed matt steel case, white dial, sapphire crystal and a soft leather strap.

A sub dial at six o’clock is an analogue representation of the timepiece’s smart technology which features MotionX activity tracking, Sleeptracker sleep monitoring, sleep cycle alarms, Get-Active alerts and Smart coaching. All the data can be backed up and stored in the MotionX cloud. The model has a battery life of over two years and is priced at €800.

Mondaine_30Oct_1200

Helvetica No 1 Smart uses the horological smart watch platform, power MotionX, to manage the bi-directional communication between the watch and smart phone or tablet it is connected to via the downloaded app. The information is read in an analogue way via the sub dial, in contrast to regular smart devices where the data is shown digitally.

Developed by Swiss company Manufacture Movements Technologies (MMT), the horological smart watch platform is currently only licensed for use by Frederique Constant, Alpina and Mondaine.

Mondaine CEO Andre Bernheim commented: “This is a beautiful Swiss watch that is also connected and smart. Mondaine, founded by our father in 1951, introduced some of the world’s first LCD and LED watches and now we are doing something which is the next step in today’s watch industry. This is the first-ever Swiss-made horological smartwatch. It is a world first and Mondaine is proud to be at the forefront of this new technology, thanks to a collaboration with MMT.”

Pictured is the promotion taking place now at Zürich Airport, a top performing airport for sales of Mondaine and Luminox watches

Pictured is the promotion taking place now at Zürich Airport, a top performing airport for sales of Mondaine and Luminox watches.

Mondaine_30Oct_600_002

Europe and Asia are Mondaine’s strongest markets in travel retail, with the brand listed at all airports in Korea. Mondaine Global Sales Manager Travel Retail Beat Schärer said the company would like to strengthen its position in Asia.

Read the rest of the article @The Moodie Report

Mach was aus dir!

Blickpunkte September 2015

Philippe Kahn

Philippe Kahn wanderte einst illegal in die USA ein. Heute ist er eine der Ikonen des Silicon Valley – und entscheidet mit darüber, wie Mensch und Maschine sich miteinander vernetzen.

Philippe Kahn hat sich auf sein Fahrrad geschwungen und ist die 3,5 Kilometer von seinem Haus am Hafen ins Büro gefahren, in der Innenstadt der kalifornischen Küstenstadt Santa Cruz. Es ist Mittag, Kahn muss erst einmal etwas essen und lässt sich eine Platte Sushi kommen. Er habe die ganze Nacht durchgearbeitet, sagt er und lacht dröhnend – ‘um herauszufinden, wie man besser schläft’. Denn er tüftelt gerade an einem ‘smarten Bett’, also an einer Liegestatt, die den Schlaf der Menschen verbessern soll.

Wie das genau funktioniert, will er nicht sagen. Fest steht er nur, dass er das Bett nicht selber auf den Markt bringen, sondern dies einem bekannter Hersteller überlassen will. ‘Wir sind die Leute hinter den Kulissen’, sagt Kahn.

Continue Reading